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A B S T R A C T

Electromobility in public transport has become a promising way to reduce environmental pollution. Several
contributions have sought to estimate the energy consumption of buses in public transport. However, most of
these efforts use measurements collected from controlled or simulated experiments, or that do not characterize
the entire bus network. Unlike these studies, this article estimates the energy consumption of all the electric
buses that circulate in the city of Santiago, Chile, during the studied period using full disaggregated GPS data
and empirical measurements on some sensorized electric buses. The methodology considers a feature selection
phase and the development of energy consumption prediction models using physics based and machine learning
approaches. The performances of both models are compared with each other, and then, the best one is used
to measure the impact of electromobility in the city. This analysis allows decision-makers to target investment
by determining the buses with higher energy consumption savings in the face of budget constraints.
1. Introduction

Formerly known as Transantiago, RED, the public transport sys-
tem of Santiago, Chile, has around 7400 buses in 2023, of which
approximately 21% is electric. This high penetration rate has posi-
tioned Santiago as the city outside of China with the most significant
number of electric buses in public transport [1]. The significant num-
ber of electric buses operating in RED aligns with local and interna-
tional sustainable policies. Particularly, this is in line with the objec-
tives set out in the latest National Determined Contributions (NDC) of
Chile1 and with the 2030 Agenda for Sustainable Development of the
United Nations.

In the effort to climate change averting, new energy sources and im-
provements in vehicle design and information technology are necessary
to reduce transport-related carbon emissions [2,3]. In this endeavor,
the role of electric buses in public transit is important to take steps
to reduce climate change [4]. Particularly, electric buses can reduce
energy consumption and carbon dioxide emissions [5], diminishing
the spewing of pollutants that harm the environment and people’s
health [6]. Furthermore, this technology is significantly more efficient
than internal combustion diesel engines [7]. However, the adoption of
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electric buses shows some important drawbacks. Regarding economic
aspects, the Total Cost of Ownership has been pointed out as one of
the main barriers to their implementation [8]. Moreover, the operation
of electric buses must overcome several challenges, including range
limitation [9], lengthy charging times [10], and a proper distribution
of a large number of charging spots [11]. For a recent discussion on the
implementation challenges, we refer the reader to Aldenius et al. [12].
Additionally, a large deployment of electric buses (and public transport
in general) would also require an assessment of the impacts on the
electricity grid. Current distribution systems are not always designed
to accommodate important increases of electricity load, with different
charging patterns. Hence public charging infrastructure must also be
planned accordingly between electric and transportation systems [3,
13]. A review of the impact of electric public transport in the power
sector can be found in [14].

Nowadays, several cities are transitioning to greener bus fleets [15],
and in Santiago, Chile, the number of electric buses in operation on
RED will continue to increase in the coming years [16]. This raises the
question of how a large share of electric buses impacts some key per-
formance indicators of a public transport system. Literature shows that
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the overall energy consumption would diminish, but how and to what
extent? Moreover, how do energy consumption savings vary with an in-
creasing e-fleet considering actual driving conditions? In this paper, we
tackle this issue by devising a novel methodology that estimates electric
buses’ energy consumption using two sources of information: GPS for
all the buses in the network and empirical measurements on some
sensorized electric buses. On this, highly disaggregated data provides
greater precision in computing energy consumption, supporting better
decision-making and control. Besides, by considering diverse driving
patterns, our approach allows a better understanding of short-term
energy consumption.

Different methodologies have been developed in the literature to
measure the impact of electromobility, comparing the performance of
conventional, electric, and hybrid buses. In general terms, these efforts
conclude that, under normal conditions, new technologies reduce en-
ergy consumption, in addition to reducing CO2 emissions compared to
conventional vehicles. To support the above, the data from these works
have been collected mainly in controlled or simulated environments.
However, these protected conditions may limit the true understanding
of energy consumption in real driving situations during the whole day
of operation. Recently, studies have been published using sensorized
bus data similar to ours with high granularity. However, these efforts
have focused on the quality of the models rather than their application
to the entire network to obtain public policy recommendations. This
work helps bridge this gap by proposing an approach that uses disag-
gregated data measured in real driving situations throughout the entire
bus network of Santiago’s public transport system.

The contributions of this work are two-fold. First, two kinds of
models are proposed that, taking advantage of the wealth of disag-
gregated data available, allow us to estimate the energy consumption
of the electric buses in the system under different environmental and
driving conditions: one based on physics that considers force and
energy balance equations, and another empirically based, in which
supervised machine learning techniques are used. Second, a case study
is carried out in the city of Santiago, Chile, comparing all the proposed
models in terms of goodness of fit and determining relevant variables.
Finally, the impact of the introduction of electric buses on the energy
consumption of the system is quantified.

The rest of this article is structured as follows. In Section 2, the
literature is reviewed. Section 3 describes the data and the case study
analyzed in this work. Section 4 presents the methodology for esti-
mating energy consumption. In Section 5, the methodology is applied
to the case of Santiago, Chile, including the analysis of the impact
of increasing electromobility in the city. Finally, in Section 6, the
conclusions and lines of future work are presented. For the sake of
simplicity, Appendix shows all the abbreviations used in this paper.

2. Literature review

2.1. Influential factors for energy consumption

Growing pollution levels in major cities is becoming a delicate issue
in cities worldwide. In this regard, although electric vehicles (EVs) offer
several environmental advantages, there has been scarce research on
the impact of EVs on public transit networks [14]. Indeed, most of
the literature has focused on estimating the consumption of electric
buses by using a fleet sample (e.g., [17–22]) or in planning problems,
such as finding optimal charging schedules that reduce costs while
ensuring operational continuity (see [23], for a review on electric
bus planning and scheduling problems). Consequently, the emphasis of
previous literature lies more on the accuracy of prediction techniques
and the performance of optimization approaches rather than the actual
influence of electric buses on the transportation network.

The literature shows that the power consumed by a bus depends on
several factors. In particular, Sinhuber et al. [24] highlights the charac-
teristics of the bus, speed and acceleration, while Abdelaty et al. [17]
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and Bartłomiejczyk and Kołacz [25] consider the frequency of stops
and weather conditions, respectively, as relevant factors. Along these
same lines, Pettersson et al. [26] employ stochastic models within a
hierarchical structure to generate physical properties of road transport
operations. This approach enables dynamic simulations that estimate
energy usage. The authors find that the intensity parameter of the
stochastic model for stops has an impact of 8.3% on energy consump-
tion. Likewise, the characteristics of the route also have an influence
on consumption. In this regard, Al-Ogaili et al. [27] show that alti-
tude variation along the route is a first-order factor for the energy
consumption of a bus. For the rest, the mass of passengers also sig-
nificantly influences energy consumption [28]. The literature shows
that the impact of these factors depends on the technology that the
bus incorporates. In particular, Ma et al. [29] conclude that congestion
and the number of stops have a different effect on the consumption of
electric and diesel buses. However, in the case of electric buses, this
impact is subject to a trade-off. Indeed, according to Liu et al. [30], an
electric bus at its maximum capacity has a higher energy consumption
of approximately 23% compared to the bus without considering the
mass of the passengers. On the other hand, in the same study it is also
commented that, when the mass of the vehicle is greater, the amount
of energy that is stored in the battery through regenerative braking
increases.

2.2. Methodologies for energy consumption estimation

Various methodologies allow us to estimate energy consumption,
mainly highlighting two approaches. The first considers the calibration
of physics-based models based on the dynamics of the vehicle and its
powertrain [29,31–35], which, due to the large number of variables
that influence energy consumption, can present considerable estimation
errors [20]. The second approach considers instead the use of statistical
learning models. These methods identify highly complex relationships
between different variables and the measurement of consumption, gen-
erally through Machine Learning (ML) models [36–41]. Although this
type of model has obtained good prediction results [42], its conclusions
are strongly dependent on the available data set [32]. In this way, its
generalization to different contexts is more difficult to perform.

Some efforts that use physical basis models are described below.
Zhang et al. [31] estimate the fuel consumption of 75 public transport
buses in Beijing, China, from emission measurements. In particular,
the authors analyze the impact of driving conditions on consumption,
finding, for example, that the average speed and the use of air con-
ditioning have a great influence on the fuel consumed. Gallet et al.
[33], meanwhile, proposes a longitudinal dynamics model to estimate
the energy consumption of electric buses. The authors then conduct
a case study on the complete bus network in Singapore, finding the
estimated consumption per line and type of bus. More recently, Liu
et al. [30] use a simulation tool, based on vehicle speed and torque,
to estimate the impact of passenger mass on the energy consumption
of public transportation buses in Minneapolis and Saint Paul, United
States. The authors find that the mass of passengers produces a greater
increase in the energy consumption of conventional buses, compared
to electric buses, due to the regeneration capacity of the latter.

Statistical learning models have become a recent line of research.
In this regard, Sun et al. [43] use Artificial Neural Networks models
to predict fuel consumption in hybrid buses from disaggregated data.
In particular, using data from two sensorized buses in Minneapolis,
United States, the authors compare the predictive capacity of their
models and show that the greater the temporal aggregation, the better
the prediction quality. Abdelaty et al. [17] calibrate ML models to
predict energy consumption of electric buses in Hamilton, Canada. The
authors use a full-factorial experiment to define operational scenarios
that allow simulating energy consumption, which is later incorporated

as a dependent variable in the ML models. Finally, Li et al. [44]
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Table 1
Examples of different approaches of energy consumption estimation in the literature.

Reference Location Method Calibration data

Wu et al. [34] California Physical base model 169 trips (4 routes) over 5 months.
Zhao et al. [22] Beijing ML - Frequency item mining 10 electric buses for one year.
Gallet et al. [33] Singapore Physical base model Non-data-driven model
Jiang et al. [21] Beijing ML - Gaussian processing regression 8 electric buses scheduled on the same route for one year.
Zeng et al. [36] Toyota ML - Support vector machine regression and Artificial

Neural Network
7989 trips over one month.

Pamuła and Pamuła [39] Jaworzno ML - Multiple linear regression and deep learning
network

12 electric buses over 4000 journeys for 10 months.

Sennefelder et al. [40] Seville ML - Multiple linear regression 30 conventional diesel-powered buses for 11 consecutive days.
Qin et al. [41] Meihekou ML - Support vector machine regression 3 identical electric buses under real conditions.
Chen et al. [45] Chattanooga ML - Long short-term memory and Artificial neural

network
3 identical electric buses under real conditions.

Li et al. [44] Shenzhen ML - Stochastic and k nearest neighbor Random Forest 20 electric buses over five months.
propose a two-step methodology: Stochastic Random Forest and k-
Nearest Neighbor. The authors use data from 20 buses over five months
in Shenzhen, China, from which they show that the models have high
predictive performance.

Table 1 summarizes examples of previous contributions that predict
energy consumption using both physical base and statistical learning
models.

In summary, taking the reviewed literature into account in both
subsections, this article contributes to a recent line of research, propos-
ing models that estimate the energy consumption of electric buses
through ML models. Like some contributions from recent years, we use
disaggregated data for a subsample of sensorized electric buses. Yet,
contrary to most studies, we utilize these models to estimate energy
consumption across an entire city’s bus network, an unprecedented
endeavor in the relevant literature. We aim to fill this gap by employing
advanced quantitative methodologies for a comprehensive, city-wide
evaluation of electromobility’s impact. Our proposed methodology and
its application could provide valuable insights to local decision-makers
as, to the best of our knowledge, our paper is the first effort that
estimates the energy consumption of buses in Chile for a full public
transport network. These insights encompass tactical decisions, such as
determining which bus lines to electrify first, and specific operational
advice for drivers to promote more sustainable driving behaviors.

3. Data description and case study

RED works in an integrated way, that is, passengers can access
any mode of transport with the same means of payment. In addition,
the integrated modes are buses, Metro, and suburban trains, while
payment is made through a smartcard called ‘‘Bip!’’ card [46]. Given
the integration, it is possible to make combinations without additional
cost between the modes of travel. The system covers the area known
as Greater Santiago, made up of the 32 communes of the province of
Santiago, in addition to the communes of San Bernardo and Puente
Alto [47].

The study period examined in this research corresponds to Septem-
ber 22, 2021. Note that during this date, the COVID-19 lockdown
started at midnight, implying that the buses operated normally during
the daytime. Furthermore, during this period, most of the COVID-
19 measures were already lifted, and the distribution of trip pur-
poses quickly resumed patterns close to those observed before the
pandemic [48].

For this period four databases are considered, namely: GPS of all the
buses that circulated on the network that day, the physical character-
istics of buses, network transactions, and empirical measurements of a
sensorized sample of electric buses. The source of the first three bases
is the Directorio de Transporte Público Metropolitano (DTPM),2 which is a
public body under the Ministry of Transport and Telecommunications

2 https://www.dtpm.cl/.
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Table 2
Instance of GPS data provided by DTPM for the day September 22, 2021.

Timestamp 2021-09-22T12:09:47Z
License BJFC-26
Latitude −33.42045
Longitude −70.61706
Route T502 00R
Speed [km/h] 12.04

Table 3
Data sample with physical characteristics of the buses.

License FLXV43 PLHK81
Emissions standard ELECTRIC EURO VI
Area [m2] 7.67 7.50
Mass [kg] 12,420.0 19,203.71

Table 4
Quantity of license plates pér technology.

Emissions standard Quantity Percentage

EURO III WITH FILTER 2785 40%
EURO VI 1458 21%
EURO V 1320 19%
ELECTRIC 784 11%
EURO III 556 8%

that is in charge of RED operations. The source of the last base is
the company TrackTec,3 which develops and implements technological
solutions through the monitoring of telemetry variables.

3.1. GPS data

Each bus in the system emits a GPS signal every 30 s. Based on this,
DTPM provides us with information on the fields shown in Table 2.
This database contains 12,387,516 records, for a total of 6650 unique
bus license plates, from 00:00:00 to 23:59:59 of the study period.
Fig. 1 shows the distribution of the GPS records of the buses during
the study period. It can be observed that, as expected, there is a large
number of buses transiting in the central communes in comparison to
the peripheral communes.

3.2. Physical characteristics of the buses

The DTPM provides us with specific information on the buses that
circulated in September 2021. Specifically, as shown in Table 3, we
obtain the emission standard of the engine, the mass of the bus and
the cross-sectional area for each patent. Although there are values with
high frequencies, the buses that circulate in Santiago are of different
types. Finally, Table 4 shows the number of license plates and the

3 https://tracktec.cl/.

https://www.dtpm.cl/
https://tracktec.cl/
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Fig. 1. Heatmap of the distribution of the buses during the study period.
Table 5
Fields registered in the transaction database.

Timestamp 22-09-2021 0:00 22-09-2021 5:42
Type BUS METRO - OT
Location GCBC-29 Los Libertadores
Card ID bd8e667d 38c12ec3
Operator U2 - Su Bus –
Route T230 –
Direction I –

percentage of buses according to emission standards. It can be deduced
from this that 89% of the patents correspond to diesel buses, while the
remaining 11% correspond to electric buses.

3.3. Transactions

As previously mentioned, payment in the RED system is made
through the ‘‘Bip!’’ Card. Through this card, only boarding information
is recorded. This information is collected by an external company,
and then sent to DTPM. The information related to where passengers
alight is estimated by DTPM, using ‘‘Analysis of public transport data’’
(ADATRAP, in Spanish),4 a software that implements the methodology
proposed in [49]. Then, each entry in the database provided by DTPM
corresponds to a transaction, which contains information according
to the fields shown in Table 5. This database contains 2,989,099
transactions for the study period.

3.4. Sensorized bus data

The last database is provided by TrackTec. This is a private com-
pany that provides solutions through different types of sensors and
monitoring systems. TrackTec works directly with some RED operators,
measuring different operational variables of the buses. The foregoing
seeks to help the decision-making of the operators to improve the

4 https://www.dtpm.cl/index.php/documentos/matrices-de-viaje.
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Table 6
Fields registered in the database provided by TrackTec.

License FLXZ-27
Date 2021-09-22T08:23:42Z
Latitude −33.508
Longitude −70.779
Speed [km/h] 41
Odometer [km] 149 382.1
Accelerator % 63
Brake % 0
RPM [rpm] 1383
Vent. Level A/C 0
Set Temp. A/C [◦C] 24
Temp. In [◦C] 13
Temp. Ex [◦C] 11
Av. State Pads % 60.8
Total generated power [kW] −16 087.2
Total consumed power [kW] 63 461.9

indicators of quality of service to the user [50]. The database delivered
by TrackTec contains 10,601 records, which are obtained from six
electric buses in the study period. Table 6 shows an example of a record
provided by the company

The GPS devices installed by TrackTec on the buses under consider-
ation emit a signal every minute. However, they also emit a signal when
particular phenomena of interest to the company occur, such as accel-
eration above an assigned threshold. On the one hand, the database
contains information identical to that obtained with GPS technologies
such as the one described in Section 3.1. These variables are License
Plate, Date, Longitude, Latitude, Speed, and Odometer. The TrackTec
database also contains new information, less explored in the literature,
that allows a better characterization of the bus operation. In particular,
the Accelerator and Brake variables correspond to the percentage that
the accelerator and brake pedal are pressed, respectively, while the
RPM variable indicates the revolutions per minute of the engine. The
variables Vent. Level A/C and Set Temp. A/C is attached to air condition-
ing. Specifically, the first indicates the intensity of the air conditioning,
while the second corresponds to the selected temperature of the same.
The variables Temp. In and Temp. Ex correspond to the internal and

https://www.dtpm.cl/index.php/documentos/matrices-de-viaje
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Fig. 2. Empirical energy efficiency of buses by hour.
external temperature measurements of the bus, respectively. Finally,
the Total Generated Power and Total Consumed Power are calculated at
each instant through the sum of the product of the voltage and the
current that flows to and from the battery in a time interval.

With the data described above, it is possible to calibrate models
that use sensor data as independent variables and empirical energy
efficiency as a dependent variable. The latter is calculated as the quo-
tient between energy consumption (calculated from the Total Generated
Power and Total Consumed Power) and the distance traveled (calculated
from the Odometer). Fig. 2 shows the variation of energy efficiency for
each of the six buses in the study period.

4. Methodology

4.1. Physical bases model

In order to estimate energy consumption, the physical base models
use a balance of the forces that the bus faces. This class of models, un-
like models based on supervised learning methods, have the advantage
of not requiring an empirical measurement of energy consumption for
its evaluation. In this article, we use the model of Chen et al. [32].
According to this model, the energy consumption (𝐶𝐸𝑡) in an interval
of 𝑇 seconds is calculated according to Eq. (1), where 𝑃 𝑏𝑎𝑡

𝑡 is the power
consumed by the battery to generate the movement.

𝐶𝐸𝑡 = ∫

𝑡

𝑡−𝑇
𝑃 𝑏𝑎𝑡
𝑣 𝑑𝑣 (1)

Then, to calculate 𝑃 𝑏𝑎𝑡
𝑡 , Eq. (2) is used in which two cases are

considered, depending on the sign of the sum of the rolling resistance
force (𝐹 𝑟𝑟

𝑡 ), the aerodynamic force (𝐹 𝑎𝑑
𝑡 ), the road gradient force (𝐹 𝑟𝑔

𝑡 )
nd the acceleration force (𝐹 𝑎𝑐𝑐

𝑡 ). If this sum is positive, the power
onsumed by the battery is equal to 𝑃𝑡, calculated according to Eq. (3),
here the variables and parameters necessary for its computation are
resented in Tables 7 and 8, respectively. If the sum of the forces
s negative, the current is directed towards the battery, causing it to
harge [51]. In this case, a parameter 𝑘𝑡 associated with the percentage
f power that is actually charged to the battery is considered. According
o Zhang and Yao [52], the parameter 𝑘 can be calculated as a
5

𝑡

Table 7
Physical base model variables.

Variable Variable name

𝑣𝑡 Instant speed of the bus
𝑚𝑡 Instant mass of bus and passengers
𝛼𝑡 Slope of route in degrees

piecewise function from the instantaneous speed (𝑣𝑡) of the bus using
Eq. (4).

𝑃 𝑏𝑎𝑡
𝑡 =

{

𝑃𝑡 if (𝐹 𝑟𝑟
𝑡 + 𝐹 𝑎𝑑

𝑡 + 𝐹 𝑟𝑔
𝑡 + 𝐹 𝑎𝑐𝑐

𝑡 ) ≥ 0
−𝑘𝑡 ⋅ 𝑃𝑡 if (𝐹 𝑟𝑟

𝑡 + 𝐹 𝑎𝑑
𝑡 + 𝐹 𝑟𝑔

𝑡 + 𝐹 𝑎𝑐𝑐
𝑡 ) < 0

(2)

𝑃𝑡 =
𝑣𝑡(𝐹 𝑟𝑟

𝑡 + 𝐹 𝑎𝑑
𝑡 + 𝐹 𝑟𝑔

𝑡 + 𝐹 𝑎𝑐𝑐
𝑡 )

𝜂𝑚𝑜𝜂𝑡𝑟

=
(

𝑣𝑡
𝜂𝑚𝑜𝜂𝑡𝑟

)(

𝐶𝑟𝑚𝑡𝑔 cos(𝛼𝑡) +
𝜌𝑎

2
𝐶𝑑𝐴𝑓 𝑣2𝑡 + 𝑚𝑡𝑔 sin(𝛼𝑡) + 𝑚𝑡𝛿

𝜕𝑣𝑡
𝜕𝑡

)

(3)

𝑘𝑡 =

⎧

⎪

⎨

⎪

⎩

0.5 ⋅
𝑣𝑡
5

if 𝑣𝑡 < 5 [m∕s]

0.5 + 0.3 ⋅
𝑣𝑡 − 5
20

if 𝑣𝑡 ≥ 5 [m∕s]
(4)

The speed and slope of the route are calculated for each GPS record
from the geographic coordinates. Finally, it should be considered that
there are other parameters that are more difficult to estimate, so the
values used are taken from the literature, which is shown in Table 8.

4.2. Statistical learning models

Taking into consideration the empirical measurements of energy
consumption provided by TrackTec, ML and linear regression models
are developed using the data from six electric buses monitored by the
company.

4.2.1. Data processing
Part of the objectives of this work is to quantify the importance

of different operational variables in the energy consumption of the
network buses. For this reason, in addition to the data provided by
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Table 8
Parameters of the physical basis mode.
Parameter Name Value Source

𝜂𝑚𝑜 (Electric) Engine efficiency electric buses 0.85 Asamer et al. [53]
𝜂𝑡𝑟 (Electric) Transmission efficiency electric buses 0.97 Asamer et al. [53]
𝜂𝑚𝑜 ⋅ 𝜂𝑡𝑟 (Diesel) Total efficiency diesel buses 0.3 Wdaah and Müller [7]
𝐶𝑟 Coefficient associated with rolling resistance 0.01 Gao et al. [54]
𝐶𝑑 Aerodynamic drag coefficient 0.7 Lajunen et al. [55] and Gao et al. [54]
𝑔 Acceleration of gravity 9.81 –
𝜌𝑎 Air density 1.16 –
𝐴𝑓 Cross-sectional area of the bus – DTPM
𝛿 Bus rotational inertia factor 1 Hjelkrem et al. [56]
Table 9
Variables available for each interval after aggregating the data.
Variable Description Unit

PMConsumption Total energy consumption calculated from the physical base model [kWh]
TotalDistance Total distance traveled by the bus calculated from GPS data [km]
AvgAng Average angle of the incline of the route that the bus follows [degrees]
SdAng Standard deviation of the incline angle of the route followed by the energy bus [degrees]
AvgK Energy recovered from regenerative braking %
SdK Standard deviation of energy recovered from regenerative braking %
AvgMassTotal Average total mass of the bus (body and passengers) [kg]
SdMassTotal Standard deviation of the total mass of the bus (body and passengers) [kg]
AvgVel.inst Average instantaneous speed [km/h]
SdVel.inst Standard deviation instantaneous speed [km/h]
AvgAce.inst Average instantaneous acceleration [m/s2]
SdAce.inst Standard deviation instantaneous acceleration [m/s2]
AvgPed.Ace Average accelerator pedal utilization %
SdPed.Ace Standard deviation of the average use of the accelerator pedal %
AvgRPM Average revolutions per minute [rpm]
SdRPM Standard deviation revolutions per minute [rpm]
AmountPed.Ace Number of records in which the accelerator pedal is being used –
AvgPed.Fre Average brake pedal utilization %
SdPed.Fre Standard deviation of the average use of the brake pedal %
AmountPed.Fre Number of records in which the brake pedal is being used –
AmountAc.on Number of records in which the air conditioning is active –
AvgT.Ac Average air conditioning temperature [◦C]
SdT.Ac Standard deviation temperature indicated in the air conditioner [◦C]
AvgT.in Average temperature inside the bus [◦C]
SdT.in Standard deviation mean temperature inside the bus [◦C]
AvgT.ex Average temperature outside the bus [◦C]
SdT.ex Standard deviation average temperature outside the bus [◦C]
AvgPast Average condition of the pads %
SdPast Standard deviation mean status of pads %
Hour (Categorical) Time of the records of the specified interval –
TrackTec, other variables are added that can be obtained from the data
provided by the DTPM, namely: distance traveled, instantaneous speed,
slope angle and instantaneous total mass.

We consider energy efficiency [kWh/km] as the response variable
in time intervals of 5, 10, 15 and 30 min. The independent variables
are shown in Table 9. On the other hand, the estimate of energy
consumption made through the physical base model is incorporated as a
predictor variable in Section 4.1. This is done in line with what was put
forward in [45], where Vehicle Specific Power is included as a predictor
variable given its interpretation linked to the power consumed.

4.2.2. Selection of variables
As described in the previous subsection, the training data considers

a large number of variables. In the context of supervised learning
models, if some of the variables are not relevant for the estimation
of energy consumption, their use can result in models that present
excessive variance, and therefore overfit the data of training [57].
Given this, in this study we perform a variable selection procedure. In
this regard, the literature provides several methods to select variables
(see, e.g., [58], for a comprehensive review and comparison of feature
selection methods in the binary classification context). In this paper,
we employ the Boruta algorithm, a tree-based method. This feature
selection method has shown remarkable accuracy in previous litera-
ture, presenting low out-of-bag error rates and low computation times
(e.g., [59–62]). Moreover, previous studies have found that the Boruta
6

algorithm is one of the best-performing methods in low-dimensional
contexts, such as ours, where the number of observations far exceeds
the number of variables [63]. Boruta works as follows:

1. A new set of variables is generated from the random permutation
of each of the original variables. These new variables are called
shadow features.

2. A Random Forest model is fitted, using the original variables
and the shadow features as predictors. With this model, the
importance of each variable considered is found.

3. Iterate, checking if the original variables have a greater impor-
tance than the shadow features with the maximum importance.
Then, those variables that are consistently less important than
any of the shadow features are removed.

In the prediction models that are explained below, we only consider
the variables that the Boruta model indicates as important.

4.2.3. Prediction models

Random forest
Random Forest models consider the calibration of multiple decision

trees in parallel. The trees are generated using different training sets
assembled by bootstrapping type sampling [64] so that in each iteration
a number of variables are randomly selected that are used to fit a deep
tree [65]. In the case of regression, for each new data 𝑥 the estimate
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Fig. 3. Functioning of a neuron in a neural network.

is calculated as a simple average of the outputs of the trees as shown
in Eq. (5), where 𝑇𝑏 corresponds to tree number 𝑏 and 𝐵 is the total
number of trees created:

𝑓𝐵(𝑥) = 1
𝐵

⋅
𝐵
∑

𝑏=1
𝑇𝑏(𝑥) (5)

Support Vector Regression
A Support Vector Regressor (SVR) model seeks to construct a func-

tion 𝑓 (𝑥) = 𝑤 ⋅ 𝑥+ 𝑏 that returns values close to the dependent variable
𝑦 (within a margin of size 𝜖), and that at the same time, is as regular
as possible. The deviation that the function has with respect to the
response variable is 𝜖. In general, the optimization problem to be solved
is shown in Eqs. (6a)–(6d) [66], considering 𝑥, 𝑦, 𝑏, 𝑤 ∈ R𝑀 , where 𝑀
is the number of predictor variables:

min 1
2
‖𝑤‖

2 + 𝐶
𝑛
∑

𝑖=1
(𝜉𝑖 + 𝜉∗𝑖 ) (6a)

subject to (𝑤𝑥𝑖 + 𝑏𝑖) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖 (6b)

𝑦𝑖 − (𝑤𝑥𝑖 + 𝑏𝑖) ≤ 𝜖 + 𝜉∗𝑖 (6c)

𝜉𝑖, 𝜉
∗
𝑖 ≥ 0 (6d)

where 𝐶 > 0 controls the penalty imposed on observations that fall
outside the range, thus avoiding overfitting.

Additionally, SVR considers the use of Kernel functions. These func-
tions take the data to a different, usually higher, dimensional space,
allowing non-linear decision functions to be generated. The kernel
functions that are used are the following:

1. Linear Kernel: 𝐾(𝑥, 𝑦) = (𝑥𝑇 𝑦 + 𝐶)
2. Radial Kernel: 𝐾(𝑥, 𝑦) = exp(−𝛾 ‖𝑥 − 𝑦‖2)
3. Polynomial Kernel: 𝐾(𝑥, 𝑦) = (𝛾𝑥 ⋅ 𝑦 + 𝐶)𝑞

where 𝛾 is a hyperparameter to adjust.

Neural Networks
A Neural Network (NN) corresponds to a structure that seeks to

replicate the behavior of the human brain by interconnecting a large
number of neurons with each other from inputs and outputs. The
general structure of a neuron is shown in Fig. 3.

Each neuron of the NN has an activation function 𝑓𝑗 that transforms
inputs into outputs. In each neuron, a weighted sum 𝑧𝑗 of the input
values is performed according to the weights assigned to each variable
𝑤𝑖𝑗 and the bias 𝑏𝑗 . The weighted sum is calculated according to Eq. (7).
The weights can be estimated through different methodologies, the
most classic being backpropagation [67].

𝑧𝑗 =
𝑁
∑

[𝑥𝑖 ⋅𝑤𝑖𝑗 + 𝑏𝑗 ] (7)
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𝑖=1
Table 10
Variables included in each dataset.

Variable Full dataset Limited dataset

PMConsumption ✓ ✓

TotalDistance ✓ ✓

AvgAng ✓ ✓

SdAng ✓ ✓

AvgK ✓ ✓

SdK ✓ ✓

AvgMassTotal ✓ ✓

SdMassTotal ✓ ✓

AvgVel.inst ✓ ✓

SdVel.inst ✓ ✓

AvgAce.inst ✓ ✓

SdAce.inst ✓ ✓

Hour ✓ ✓

AvgPed.Ace ✓ –
SdPed.Ace ✓ –
AvgRPM ✓ –
SdRPM ✓ –
AmountPed.Ace ✓ –
AvgPed.Fre ✓ –
SdPed.Fre ✓ –
AmountPed.Fre ✓ –
AmountAc.on ✓ –
AvgT.Ac ✓ –
SdT.Ac ✓ –
AvgT.in ✓ –
SdT.in ✓ –
AvgT.ex ✓ –
SdT.ex ✓ –
AvgPast ✓ –
SdPast ✓ –

4.2.4. Training and validation
A summary of the methodology developed in this study is presented

in Fig. 4. From the aggregated database, the construction of which is
described in Section 4.2.1, two data subsets are generated: (i) Training,
which contains data from four buses (66.7%) and (ii) Testing, which
contains data from the two remaining electric buses (33.3%). These
subsets vary from a cross-validation that considers all the different
combinations of bus layouts. Then, from the training set, the most rel-
evant variables are selected using the Boruta algorithm. Subsequently,
four models are trained: Linear Regression (LR), Random Forest (RF),
Support Vector Regressor (SVR) and Neural Network (NN). Next, pre-
dictions are made from the test set and the results are evaluated. The
metric used to compare the performance of the models is the Mean
Absolute Percentage Error (MAPE), which is widely used in the works
cited in the literature

It is important to remember that the variables shown in Table 9
require data from both DTPM and TrackTek. However, as mentioned,
the data available for the entire network corresponds only to that of the
DTPM. For the same reason, and depending on the circumstance, we
will use two sets of variables. The first set called full dataset considers
all the variables, while the second called limited dataset considers only
those variables that can be calculated with data from the DTPM. We
utilize the limited dataset when applying the most effective model
across the entire network, simulating an all-electric bus scenario. These
estimates are then juxtaposed with those derived from the physical base
model (PM) to gauge potential energy consumption savings should the
bus technology transition from diesel to electric. Table 10 shows the
variables belonging to each set.

5. Computational results

In this section we apply the models described in Sections 4.1 and
4.2 to the data presented in Section 3. In particular, Section 5.1
presents the most relevant variables for estimating energy performance.
In Section 5.2 the developed models are compared. In Section 5.3 we
show the relevance of using our disaggregated approach. Finally, in
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Fig. 4. A general overview of the proposed approach.
Table 11
Selection of variables at different levels of temporal aggregation.

Variables 5 min 10 min 15 min 30 min Quantity

AvgT.Ac ✓ ✓ ✓ ✓ 4
SdPed.Ace ✓ ✓ ✓ ✓ 4
AvgVel.inst ✓ ✓ ✓ ✓ 4
PMConsumption ✓ ✓ ✓ ✓ 4
AvgPed.Fre ✓ ✓ ✓ ✓ 4
AvgAng ✓ ✓ ✓ ✓ 4
AvgT.in ✓ ✓ ✓ ✓ 4
AvgK ✓ ✓ ✓ ✓ 4
SdK ✓ ✓ ✓ ✓ 4
AvgMassTotal ✓ ✓ ✓ ✓ 4
AvgPed.Ace ✓ ✓ ✓ ✓ 4
AvgT.ex ✓ ✓ ✓ ✓ 4
TotalDistance ✓ ✓ ✓ – 3
SdVel.inst ✓ ✓ ✓ – 3
AvgRPM ✓ ✓ ✓ – 3
SdPed.Fre ✓ – ✓ – 2
AmountPed.Fre ✓ – ✓ – 2
SdMassTotal – ✓ ✓ – 2
SdAng ✓ – – – 1
SdPast ✓ – – – 1
SdRPM ✓ – – – 1
AvgAce.inst ✓ – – – 1
SdAce.inst ✓ – – – 1
SdT.ex – – – – 0
SdT.Ac – – – – 0
AmountAc.on – – – – 0
SdT.in – – – – 0
AmountPed.Ace – – – – 0
AvgPast – – – – 0

Section 5.4 we study the energy benefits of replacing diesel buses with
electric buses, considering the entire network of Santiago, Chile.

5.1. Influential factors

In this subsection we analyze the most relevant factors to estimate
energy efficiency. For this, we use the Boruta algorithm, described
in Section 4.2.2, considering the explanatory variables described in
Section 4.2.1. Table 11 shows, for each level of data aggregation, the
variables accepted as predictive by the Boruta algorithm.

From the results in Table 11, it follows that a large part of the
predictive variables are associated with operational aspects and driving
style, in line with what is reported in Section 2. Some examples are the
speed, RPM, path angle, pedal usage, average speed, average grade, and
total bus mass. With this, it is evident that particular driving situations
are fundamental factors to explain the energy efficiency of buses. On
the other hand, the impact of the average temperature associated with
air conditioning and the internal temperature of the bus stands out. In
addition, the use of the accelerator pedal and its standard deviation
8

are significant in all cases. This is in line with the previous studies
presented in Section 2 regarding the importance of the frequency of
stops and accelerations in energy consumption.

Lastly, it can be seen that the variable built from the physical base
model (PMConsumption) also has a high importance, since the average
is relevant for all aggregation levels. The latter is in line with what was
obtained in previous studies (e.g., [45]).

Finally, it can be seen that, in general, the number of variables
accepted as predictors decreases as the level of aggregation increases.
This may be due to the fact that at high levels of aggregation, the
difference in the measurements of the variables is smaller, resulting in
homogeneous values between the records of the database. This further
justifies the use of disaggregated data to explain the energy consumed
by the buses.

5.2. Model performance comparison

Table 12 presents the resulting average Root Mean Square Error
(RMSE) for each level of temporal aggregation of records, datasets, and
for all the models developed. In addition, the standard deviation of the
same indicator is presented in parentheses.

As expected, the results improve considerably when the record
aggregation time is longer. This is achieved at the cost of less data
disaggregation, so the model with the lowest RMSE does not necessarily
correspond to the best of all. The best model should be considered that
with a previously selected aggregation level.

In the Table 12 it can be seen that the LR and the linear kernel
SVR always give the best results. The differences between both models
are small and, in general, linear regression stands out when the data
aggregation time is longer. When predicted in units of time of up to
15 min, the linear SVR explains the energy efficiency of electric buses
equally or better.

On the other hand, it is possible to observe that the physically based
model delivers worse results than the statistical learning models in all
cases. This could be because the first one is based on physical equations
that are not capable of explaining the particular situations that a bus
faces in a day. However, this type of model allows estimating energy
consumption for electric and conventional buses. This, in our case, is
not possible to do from statistical learning models as we do not have
conventional bus data with which to calibrate them.

It is important to emphasize the difference that exists in the results
when using different datasets. As previously mentioned, the full dataset
uses variables measured by TrackTec, so they are not available for the
entire network. Given this, the model to be used must incorporate the
variables considered in the limited dataset, which are available for all
buses. The benefit of using the full dataset over the limited dataset,
represented by the RMSE, is 0.01, 0.009, 0.008, and 0.019 for the
aggregation levels of 5, 10, 15, and 30 min, respectively.
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Table 12
RMSE of each model for different times.

Dataset Model 5 [min] 10 [min] 15 [min] 30 [min] Average

– Physical basis models 0.402 (0.023) 0.369 (0.023) 0.334 (0.024) 0.332 (0.018) 0.359

Full dataset

Linear Regression 0.282 (0.011) 0.248 (0.022) 0.208 (0.022) 0.182 (0.025) 0.230
Random Forest 0.287 (0.009) 0.254 (0.016) 0.219 (0.020) 0.193 (0.023) 0.241
SVR (linear) 0.283 (0.013) 0.246 (0.021) 0.210 (0.021) 0.184 (0.026) 0.238
SVR (radial) 0.369 (0.008) 0.322 (0.014) 0.290 (0.019) 0.251 (0.022) 0.244
SVR (polynomial) 0.379 (0.010) 0.341 (0.013) 0.308 (0.017) 0.285 (0.021) 0.231
Neural Network 0.290 (0.017) 0.255 (0.019) 0.218 (0.019) 0.195 (0.025) 0.308

Limited dataset

Linear Regression 0.292 (0.007) 0.255 (0.023) 0.216 (0.016) 0.201 (0.022) 0.328
Random Forest 0.293 (0.005) 0.257 (0.018) 0.222 (0.016) 0.205 (0.024) 0.242
SVR (linear) 0.292 (0.011) 0.255 (0.023) 0.216 (0.017) 0.204 (0.021) 0.289
SVR (radial) 0.330 (0.008) 0.304 (0.014) 0.265 (0.014) 0.255 (0.020) 0.328
SVR (polynomial) 0.379 (0.010) 0.341 (0.013) 0.308 (0.017) 0.285 (0.021) 0.240
Neural Network 0.297 (0.011) 0.260 (0.021) 0.226 (0.018) 0.211 (0.022) 0.248
Table 13
Sensitivity analysis results of parameters of the physical base model.

Parameter Avg difference Difference in % [kWh/bus-h]

𝛿 [−0.07, 0.08] [−2.13, 2.20]
𝜂𝑚𝑜 ⋅ 𝜂𝑡𝑟 [−0.15, 0.22] [−4.28, 6.42]
𝜂𝑚𝑜 [−0.02, 0.03] [−0.23, 0.34]
𝜂𝑡𝑟 [−0.02, 0.03] [−0.23, 0.34]
𝐶𝑑 [−0.01, 0.01] [−0.41, 0.41]
𝐶𝑟 [−0.10, 0.03] [−2.19, 2.26]

Finally, to test the robustness of our results, we conduct a sensitivity
nalysis in order to investigate how energy consumption changes when
erturbing the PM input parameters. This analysis involves modifying
he parameters by 20% and computing the difference with respect to
he original values. As shown in Table 13, the average percentage
ifference remains below 7% in all cases, indicating a reasonable PM
obustness.

.3. The value of our approach

In this subsection we compare the actual value measured by Track-
ec with three different estimates for energy performance. These three
stimations are: (i) The estimation made by the physical base model,
ii) the estimation made with the best statistical learning model devel-
ped in this work (linear SVR kernel) and (iii) a theoretical value for
nergy efficiency, reported by the manufacturer of the electric buses
onsidered in this work. The latter, being an average value, does not
onsider either the environmental situations that the bus faces or the
mprovements that Tracktec has implemented in its buses with the aim
f reducing energy consumption.

The comparison is made based on two electric buses, since the other
our available are used to calibrate the linear kernel SVR model. Fig. 5
hows the estimates of the energy efficiency estimated every 15 min for
he entire study period, where PM indicates the physical model, while
VR represents the support vector regression.

Calculating the average percentage difference in each of the instants
stimated and represented in Fig. 5, it is obtained that the average
ercentage error of the theoretical energy efficiency is 104%, for the
hysically based model it is 43% and that of the linear kernel SVR
stimate is 22%. The distribution of the percentage error of the SVR
redictions are shown in Fig. 6. The performance of our best model is
n line with previous literature. For instance, Felipe et al. [38] reported
ean errors of up to 19% when predicting consumption every 5 min
sing 43 variables. Likewise, Li et al. [18] found mean errors ranging
rom 14% to 20%. It is important to note that some studies in the
iterature considered higher levels of aggregation, resulting in lower
ean errors due to error cancellation. For instance, Pamuła and Pamuła

39] observed an average error of approximately 7% for every trip they
nalyzed. Similarly, Qin et al. [41] reported average errors at the trip
9

evel around 14%.
These results confirm the benefit of using the models built with
respect to the mentioned daily average value. The previous difference
could be explained because the models capture particular microscopic
aspects of the buses and their driving that cannot be observed in a
theoretical value, since it does not consider the variables that are faced.
in reality at each instant of operation. Unlike the theoretical value,
the physical base model and the linear SVR manage to explain part
of the behavior cycles of the empirical energy efficiency. In addition,
the benefit of the statistical learning model over the physically based
ones is observed. The latter is explained because the statistical learn-
ing model considers additional variables to those considered by the
physical model.

5.4. The impact electromobility: the benefit of renewing conventional fleet
by electric buses

In this subsection, we study the benefits of changing conventional
buses to electric ones. In order to reduce energy consumption levels as
much as possible, it is necessary to determine in the first instance the
diesel buses with the greatest potential for energy savings during the
day, which will be candidates to be replaced by new electric buses.
For this, the physical base model is used to the GPS data of diesel
buses to estimate the consumption of each of these buses. Then, for
the purposes of the experiments that are presented below, we assume
that a subset of the diesel buses are replaced by electric buses, and
that therefore the way of driving does not vary when performing this
change. Subsequently, using the best statistical learning model found
in Section 5.2, that is SVR with linear kernel, the energy consumption
of these buses is estimated assuming that they are electric. Finally,
we subtract this value to the energy consumption obtained from the
physical model so we can calculate a saving for each replaced bus
considering different technologies.

Table 14 shows the different savings produced by carrying out
this procedure, replacing 1, 10, 50, 100, 500, and 1000 buses and
considering first the ones with higher energy consumption potential.
The information is presented considering different hours of the day.
As can be seen, consumption effectively decreases when electric buses
are considered. In addition, the more conventional buses are con-
sidered for replacement, the greater the network savings. Also, the
savings differ depending on the day’s hour. This occurs because our
methodology estimates vehicle-by-vehicle energy consumption during
the study period. Moreover, as the analysis considers the buses with
higher energy consumption potential first, the average hourly saving
per bus diminishes when including more buses.

By estimating energy consumption with real and disaggregated data,
it is possible to obtain results for each of the buses and at different times
of the day. This is of great value with respect to the use of daily con-
sumption averages that are not calculated based on real and particular
driving situations. This type of disaggregated analysis benefits decision

makers related to public transport, since it provides them with more
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Fig. 5. Comparison of real energy performance with the best models.
Fig. 6. Distribution of percentage error of SVR predictions.
Table 14
Savings in [kWh] by number of buses replaced, per hour.
Time of day Quantity of buses considered

1 bus 10 buses 50 buses 100 buses 500 buses 1000 buses

6 92.65 375.53 2162.12 4028.90 14 526.06 23 549.22
7 25.59 431.28 2032.63 3933.08 15 350.36 25 607.80
8 24.73 473.68 1707.95 3163.72 14 757.24 25 154.34
9 10.10 336.48 1713.47 3206.16 14 805.45 25 390.76
10 91.65 255.99 1533.82 3133.29 14 390.46 24 518.90
11 34.85 193.01 1525.71 2910.95 13 046.24 22 175.73
12 33.35 538.59 1614.63 3100.23 12 138.79 20 885.16
13 11.82 370.41 1559.38 2780.99 12 111.00 20 938.50
14 97.38 377.97 1422.82 2762.02 12 865.64 23 097.32
15 23.38 231.12 1507.93 3312.28 13 596.26 23 213.19
16 39.86 586.97 1863.45 3534.50 13 730.38 23 107.77
17 0.06 377.73 1772.71 3061.09 13 765.16 23 168.32
18 67.10 302.11 1466.88 2797.85 13 347.41 22 103.96
19 52.84 371.49 1719.27 3365.47 14 469.17 24 708.20
20 28.56 468.63 1876.91 3768.89 14 415.28 24 735.23
21 29.13 577.05 2412.74 4042.06 13 470.03 22 398.08
22 113.05 375.93 1844.54 3454.07 10 826.14 17 720.47

Avg per bus and hour 45.7 39.1 35.0 33.2 27.2 23.1
10
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Fig. 7. Marginal savings per number of diesel buses replaced per day.
Fig. 8. Heatmap of the distribution of the 50 buses with the greatest potential for energy savings.
information on energy consumption that reduces part of the uncertainty
that exists when evaluating possible public policies.

Fig. 7 shows the daily savings curve for different amounts of diesel
buses replaced by electric buses. This analysis helps determine the min-
imum number of diesel buses to be replaced to attain an energy-saving
goal. Additionally, these results make it possible to focus investment in
the face of limitations that may arise that prevent the replacement of
the entire fleet, including economic and technical feasibility.

On the other hand, Fig. 8 identifies the sectors of the region in which
the 50 buses with the greatest potential for energy savings transit. This
number of buses is considered because it is similar to some of the latest
batches of new electric buses incorporated into the public transport
network of Santiago, Chile. It can be seen that most of the buses with
the greatest savings potential cross Santiago in the east–west direction.
Both sectors have significant height differences between them, so the
buses that make this type of route frequently face very marked positive
and negative slopes. Taking into account the importance of this variable
in energy consumption, the slopes of the route could explain, in part,
why it is convenient to replace these buses with electric ones.

6. Concluding remarks

Public transport systems in the world have undergone a transition
towards electro-mobility in recent years, incorporating more electric
11
vehicles into their fleets. Motivated by the above, the number of works
in the literature that seek to estimate the energy consumption of
buses has increased considerably in recent years. However, and to the
best of our knowledge, most of these efforts base their estimates on
measurements collected from experiments under controlled conditions
–and therefore may not reflect actual operating conditions–, or they
perform the analysis for a limited subset of the system fleet. In this
paper we seek to close this gap, estimating the energy consumption of
all the buses in the public transport system of Santiago, Chile, using
real and disaggregated data from the network. Our results allow us to
analyze the real energy consumption of electric buses, and open the
doors to the design, planning and operation of actions or policies that
seek to reduce energy consumption from a holistic view of the network.

In this study, two data sources of the public transport bus system
in Santiago, Chile are used to, on the one hand, estimate the energy
consumption of electric buses, and on the other, identify relevant
variables. The first base corresponds to GPS information of all the
buses that operate in the system, which is provided by the DTPM. The
second base, instead, corresponds to information from a subset of buses,
which is provided by a sensorization company. These data include the
use of the brake pedal and the use of air conditioning, among others.
Based on this information, machine learning and physical base models
are calibrated to estimate consumption across the entire network.
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Finally, computational experiments are carried out comparing different
instances and models, obtaining public policy recommendations.

The results indicate that using the sensorized data provides better
results in the vast majority of cases compared to the use of only the data
available for the entire network. However, not all buses are equipped
with sensors to be able to measure these variables. Of the models
that can be implemented for the entire network, since they only use
variables available for all the buses, the linear regression (when the
temporality is high) and the linear SVR stand out in most cases. This
last model delivers a percentage error of 22%, standing out compared
to the physical base model that presents an error of 43%, and the use
of a theoretical value that has an error of 104%. This demonstrates
the value of using real and disaggregated data capable of measuring
particular situations that buses face in reality.

As the number of electric buses in Transantiago’s network is set to
rise, it is critical to understand the impact of increased electromobility
on city public transport. Accurate energy consumption estimates can
enhance fleet management and route design, helping decide which
services to electrify first. Thus, the best model, namely SVR, is used
to quantify the energy savings that occur when replacing 1, 10, 50,
100, 500, and 1000 diesel buses with electric buses, delivering a daily
total of 776 [kWh], 6644 [kWh], 29 737 [kWh], 56 356 [kWh], 231 611
[kWh], and 392 473 [kWh], respectively. Moreover, we determine the
areas of the region where the 50 buses with the highest potential for
energy savings are most frequently found. Interestingly, the majority
of buses with the greatest potential for energy savings traverse Santi-
ago in an east–west direction. This route involves significant altitude
variations, subjecting buses to steep inclines and declines. All these
analyses allow decision-makers to target investment by determining the
buses with higher energy consumption potential in the face of budget
constraints.

One of the main limitations of this study is that the data used may
not provide all the relevant information to estimate energy consump-
tion. In particular, the empirical measurements are circumscribed to six
electric buses that make similar routes to each other. In consideration
of the above, the variability of the measured data is limited. In addition,
the statistical learning models do not explain the consumption of buses
that operate with diesel, since they were calibrated with real data from
electric buses. On the other hand, the study period can also generate
a bias in the estimates made, although it is to be expected that the
variation in energy consumption between days of the week will not
be as significant. Lastly, one of the assumptions made to assess the
benefits of switching from conventional buses to electric buses is that
the driving mode of the buses is the same. This might not always
be true as different bus technologies might alter the driving style
generating different data. Additionally, note that our models do not
consider contextual variables, such as the conditions of the route, built
environment, or traffic signals. Therefore, incorporating these types of
variables could improve the performance of the models. Finally, we
focus solely on the energy savings provided by electric buses when
studying the benefits of replacing conventional buses. However, electric
buses typically offer a higher level of service due to additional features,
and thus, they can enhance the overall user experience. Consequently,
when deciding which service lines to electrify first, these features and
their impact on users should be taken into account.

Multiple lines of research can be pursued following this work to
tackle relevant emerging problems in public transport electromobility.
For example, investigating the use of estimates to develop performance
indicators related to drivers, buses, and other relevant factors holds
significant interest. This approach can enable the creation of targeted
training plans or incentives for drivers based on their individual per-
formance, thereby enhancing overall efficiency, safety, and quality
of service in the transportation system. Moreover, utilizing estimates
to modify the routes within the Operational Plan of the Santiago
transport system is another important area of exploration. By incor-
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porating energy consumption estimates into the planning process, it
Table 15
List of abbreviations.

Abbreviation Meaning

GPS Global Positioning System
NDC National Determined Contributions
CO2 Carbon dioxide
EV Electric vehicle
ML Machine learning
DTPM Metropolitan public transport directory, by the

acronym in Spanish
RPM Revolutions per minute
A/C Air conditioning
SVR Support Vector Regression
NN Neural Network
LR Linear Regression
RF Random Forest
MAPE Mean absolute percentage error
PM Physical base model
RMSE Root mean square error

becomes possible to optimize routes with the objective of reducing
energy consumption while maintaining service levels. This integration
of energy considerations can contribute to building a more sustainable
and environmentally friendly transportation system. Finally, energy
consumption projections derived from the estimates can serve as inputs
for operations research problems aimed at optimizing the location of
load centers. This presents a considerable challenge in establishing
a network of charging stations capable of meeting the high energy
demands of electric buses or trains. It requires meticulous planning,
investment, and coordination among various stakeholders, including
transport authorities, energy providers, and infrastructure developers.
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